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Abstract
The equations of incompressible fluid dynamics in three dimensions are reformulated in terms
of magnetization variables; the usefulness of the resulting equations in turbulence theory and in
computational fluid dynamics is explained. In particular, the new variables provide a promising

avenue to real-space renormalization in fluid dynamics.
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Introduction. In the case of two-dimensional flow, the motion of vortices and vortex blobs is
described by a simple Hamiltonian structure that is‘ the starting point for numerical algorithms (see
e.g. [3],[13]) as well as for statistical mechanical analyses of two-dimensional turbulence (see e.g.
[11],[15],[16],[20],{22],[26]). In principle, this structure could be the starting point for renormaliza-
tion procedures for simplifying numerical calculations; it has not been used in this way since in two
dimensions the energy cascade runs towards the large scales that one does not want to renormalize

away.

Euler’s equations form a Hamiltonian system in three dimensions as well as in two. It turns
out [1] that one of the Hamiltonian structures that have been proposed (see e.g. [23],[27],[28]) leads
to convergent discretizations that are both simple and Hamiltonian at every level of discretiza-
tion and that can be used to construct three-dimensional analogues of various two-dimensional
numerical and statistical arguments [1]. In the framework provided by this “magnetization” rep-
resentation renormalization appears in a particularly simple guise. Our goal here is to summarize

this development.

The two-dimensional case. We begin by summarizing well-known two-dimensional con-
structions that will motivate some of the three-dimensional arguments. We assume the reader is
familiar with the Eulef and Navier-Stokes equations for the velocity u = (u1,u2) and the vorticity
£. Space variables will be denoted by z = (z1,23), t will be the time, and R the Reynolds number.

We shall consider here only incompressible flow, div z = 0.

Write
N —

f ZE os(z — ;)
i=1

where ¢5 = §~2¢(z/6), [ = 1.



Impart to the z; (“blob centers”) the motion

N

dz; _

(;: = —(!"') = Z K‘s(g_gj)fj, 6_-,' = constants, (1)
=1

i#5
where K5 = K * ¢5, * = convolution, K = (2r)~1(—8y,8;)log|z|. This motion approximates Euler
flow (see e.g. [3],[13],[19],[24]). The system (1) is Hamiltonian, with Hamiltonian equal, after a

scale change, to the stream function 1. Its form is simplest in the case of point vortices, i.e, when

@5 is a delta function:

1 - -
H= “ir : ;fifjloglii—!.jl- (2)
1 J#

To construct viscous flow, one only has to replace equation (1) by
dz; = u dt + /2[R du(t) (3)

where w is two-dimensional Brownian motion ([3],{18]).

The same Hamiltonian is the starting point of Onsager’s statistical theory [22] and its gen-
eralizations (see e.g. [11],[15],[16],[20],(26]). In these theories, one defines a vortex temperature T
that can be positive or negative; the transition of |T'| = co between positive and negative values of
T resembles qualitatively the Kosterlitz-Thouless order/disorder transition [12],[17]. Order corre-
sponds to T' < 0. For T < 0, vorticity of one sign collects into coherent structures. The entropy is

maximum when |T| = oo.

Vortex generalizations to three dimensions. The constructions of the preceding sec-
tion can be generalized to three space dimensions in several ways, replacing the “blobs” of two-
dimensional vortex theory by (not necessarily divergence-free) arrows, or segments, or filaments of
vorticity (for reviews, see e.g. [3],[13],[19],[24]). A statistical theory built on a filament represen-
tation has been presented in [5],[6],[8],[9]. Here too the vortex temperature T' can be positive or
negative. The maximum entropy state is at |T| = oo and is attracting. It separates order at 7' < 0
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from disorder at T > 0; the positive temperature states are inaccessible for inviscid flows. Turbu-
lence lives at |T’| = co; a connection has been made [9] with the Shenoy-Williams three-dimensional
analogue [30],{31] of the Kosterlitz-Thouless renormalization theory (see more below). This theory

has been applied to the renormalization of numerical vortex algorithms [4],[7],{29].

It is apparent however that a vortex representation standing alone is not the optimal frame-
work for applying statistical tools to numerical calculations (nor indeed, for extending the two-
dimensional Kosterlitz-Thouless theory to three dimensions). The difficulty has to do with “lo-
calization”. Three-dimensional arrows or segments are only approximately solenoidal, and this
allows numerical errors to grow and change asymptotic equilibria [1]. Vortex filaments can be
made solenoidal, but then they are not “local”—fhey have one macroscopic dimension—and this
leads to problems with boundaries, with the analogues of the random vortex equation (3), and with
merger /renormalization procedures. The “magnets” we shall introduce in the next sections can be

viewed as a device for “localizing” vortex filaments or vortex loops.

A gauge-invariant form of the Euler and Navier-Stokes equations. Consider the Euler
equations in the form

Du

Tt = —gradp, divu, =0. (4)

In any domain €2, with smooth enough boundary 9, any smooth vector function w can be written

as a sum (the Hodge decomposition)

w = u+ gradg

where div 2 = 0, z-n = 0 on 9 (n is the normal to 9Q); (u,grad¢) = [, u - gradé dz = 0, and
thus u is the orthogonal projection Pw of w on the space of solenoidal vectors parallel to 9. If
0N is at infinity, the boundary condition u - n = 0 is replaced by a growth condition. Pu = u,
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Pu, = u,, for solutions u of (4), Pgradp = 0; thus equation (4) can be written as
Py +(z-Y)u)=0

or

2+ P((x-Yu)=0 (5)

The pressure p can always be recovered from
gradp = —(I — P)((z- V)u).

The definition £ = curl u shows u to be the vector potential of the vorticity &

div u = 0 is then the choice of gauge. Write
m = u + grad¢

(it is not required that div m = 0). Neither ¢ nor m is unique; m is a “magnetization”, the name
will be explained below. Clearly, x = Pm for any choice of ¢. One can readily verify that the

system

Dm;
Dt

= —-m;0iuj, m=(my,mq,m3), z=Pm, (6)
m(z,0) given, is equivalent to (5) for any initial choice of ¢, and is the gauge-invariant form of
Euler’s equations. The discussion of boundary conditions for (6) is omitted here, see for example
[25]. Note further that the addition of a term R~1Am; to the first equation (6) produces a system
equivalent to the projection form of the Navier-Stokes equations. The non-uniqueness of ¢ will be
given a physical interpretation below.

As is well known, there is an analogy between fluid mechanics and magnetostatics, in which
£ corresponds to the current and u corresponds to the magnetic induction; m corresponds to the

magnetization [14], hence the name and the notation.
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Suppose { = curl x = curl m, the vorticity, vanishes outside a sphere S of radius r. Since
the exterior of S is simply connected in three dimensions, there exists a potential ¢ such that
u = —grad¢ outside S. With this choice of ¢, m has support inside S. Thus, if { has compact

support, one can construct m with compact support. If m has compact support, one can readily

check that the impulse
can be written as

m is also an impulse density, and is a conserved quantity in incompressible flow.

A discrete Hamiltonian approximation of Euler’s equations. The vorticity £ can always
be written as a sum of divergence-free functions as small support—think of small vortex loops and
see the explicit construction below. For each element of this sum, construct the magnetization
whose support vanishes outside the support of the element. The resulting representation of the
flow field is local and divergence-free.

More specifically, let ¢5 = §3¢(z/6), [ ¢ = 1, be a function whose support is 0(6%); let 95 sat-
isfy Avs = ¢5, A = Laplace operator. Let m(g) = Zzl ﬁj)gﬁg(g-—g:_j), md) = (mﬁ”,m‘z"),mg")).

The equation u = Pm yields a velocity field u due to the magnetization in a blob ¢s centered at

Z;:
W@ = (W)@ ),
W) = W bs(z—z;) ~ MY ddebs(z — z;)-

The equation of motion of the £-th “magnet” T ¢s(z — z ;) is

dz, 0
— = u(z) = Z;y (), (7

with the evolution of the coefficients 7@(?) given from equation (6) by

d“ﬁ(_/)z_m(ka’

7 )0yuk, ux the components of u (z,). (8)
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One can readily verify that the system (7)—(8) is Hamiltonian, with H = 3 E;\;l Y - u(z;).
If the points z; are distributed so that the sum approximates an integral, then H ~ % f u-mdz =

1 [ 2 - u dz = the kinetic energy of the flow. One can readily verify that (7) is nothing but

d(ze)k oH
= , (z,)r the k-th component of z,, (7)
7 Le
dt amk( )
and (8) is
dm) oH

TR TR ®)

Note that sz=1 * and ¥z, x 7@*) are vector constants of the motion for this system. If the

z; are distributed in an irregular fashion H does not have to approximate the kinetic energy nor
indeed be positive (for details, see [1]).

A comparison of these formulas with the formulas for the magnetic induction due to a current
loop [14] show that the elements in the description just given can be viewed as small vortex loops.

The velocity of a vortex loop is not uniquely defined by its first integrals but depends on the

distribution of £ in the loop. Correspondingly, the transformation

w(z,) = Cim™® + u(z),

with C} arbitrary constants, leaves the system Hamiltonian, with
H=1iYa®. (20m® +uzy)).
3 LB g0 +ula

The convergence of the discrete representation of this section, with appropriate choices for ¢s, has

been demonstrated in [1].

Vortex statistics in magnetization variables. We now consider how the properties of
vortex systems are reflected in the properties of systems of magnets.
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Vortex stretching should cause the sum
N
z=>Y 1@

k=1
to grow in time, indeed, form an entropy or Liapounov function. This can indeed be readily checked
on the computer; a proof cannot be given at this time. It is particularly easy, in magnetization
variables, to show that as vortex lines stretch they must fold; indeed, if 3 |m¥)| increases while
Eﬁ(k) remains constant, cancellation must occur, i.e., vortex lines fold.

Consider now how to change variables from magnetization to vorticity and vice versa. Consider
a macroscopic vortex loop C of circulation T. To construct a magnetization representation of C,
construct a surface S that spans C. Its non-uniqueness corresponds to the non-uniqueness of m
and indeed explains it. Construct a coordinate system on S in terms of some variables, say ¢ and
s. In each rectangle R with vertices (g, s), (¢+64q,s), (¢+ ég,s+6s), (g, s+ &s) construct a magnet
of strength || = % fa‘R z X ds, centered at the center of R, and oriented so that the sum of the
rectangles adds up to the original vortex loop C. Note that for large-scale organized vortex loops,
the magnetization representation is less efficient than the standard vortex representation.

To go from a magnetization to a vortex representation, replace each magnet by a vortex loop,
reversing the last part of the procedure of the preceding paragraph. To construct macroscopic
vortices, if indeed they exist, go through the cut-and-paste procedures described e.g. in [7]. A
natural question is, how large are the vortex loops that can be constructed from a given collection
of magnets? This turns out to be a problem in percolation theory, studied in [10] (see also [21]).
The answer depends on the temperature of the magnet/vortex system; in a fully turbulent regime,
|T| = oo, there exist vortex structures of arbitrarily large size, limited only by the physical extent
of the turbulence.

Since Z = ), Im'__(k)l is monotonically increasing, a thermal equilibrium cannot be expected in

a magnet system, unless appropriate assumptions are added. In analogy-with the properties- of-
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vortex systems, one can stop the growth of Z by fiat, or one can construct a statistically stationary
inertial state by steadily creating well-separated magnets and removing nearby magnets with nearly
opposing orientation; that steady state can then be approximated by a Gibbs equilibrium. In either
case, some of the advantages of the Hamiltonian structure are lost. As in the equivalent vortex
representation, one finds positive and negative temperature states, separated by the attracting
|T'| = oo maximum entropy state.

For T > 0 the most likely states are the ones that minimize the Hamiltonian H, and for T’ < 0

the most likely states are the ones that maximize it.

Renormalization in magnetization variables. The |T| = oo turbulent state is a criti-
cal state that shares many properties with the critical order/disorder superfluid transition state
at low positive temperatures, as described by the Kosterlitz-Thouless and Shenoy-Williams theo-
ries [12],[17],(30],[31]. Indeed, in a simplified “2}” dimensional system one can draw a curve that
connects these states and along which certain universality properties hold [10]; it is therefore rea-
sonable to hope that the renormalization analysis near the superfluid transition can shed light in
the turbulent state and provide an insight into ways of renormalizing, i.e., simplifying, calculations.
In a renormalization analysis, one persistently removes small scales from a calculation in such a
way that the equilibrium, or the dynamics, are unchanged on a macroscopic scale. When T > 0,
a large magnet, or vortex loop, polarizes smaller ones, i.e., at or near equilibrium, the greater
likelihood of lower energies makes it likely that the smaller loops are arranged so as to reduce the
energy. The removal of small scale structures requires a decrease in vortex strength to make up
for it. For T < 0, the opposite is true: near equilibrium a large magnet anti-polarizes the medium,
and renormalization requires a strengthening of vortex lines. On the |T'| = oo boundary between
positive and negative T, one should be able to remove small loops with impunity provided one does
not otherwise perturb the system. This removal of small scales is the idea behind the “hairpin re-

9



moval” of refs. [4],[7]. Analogous constructions have been proposed by Sethian [29]. Note that such
“hairpin removal”, which is entirely equivalent to magnet merger, is much more easily performed in’
a magnet representation, where the topological constraints are trivial and conservation of impulse

can be imposed exactly.

Conclusions. We have developed the magnetization representation [1]. We have shown that
the change of variables between vortex and magnet representation is easy and can be made locally,
i.e., hybrid vortex/magnet representations are readily implemented. It is natural to represent
large scales by means of vortices and small scales by means of magnets, both for renormalization
purposes and for the approximation of diffusion. For a detailed discussion of such hybrids, see
[2]. Renormalization can be carried out locaily in a magnetization representation, as seems to be

desirable in view of the inhomogeneity of the vortex temperature field.
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